

La terapia rigenerativa in nefrologia: le prospettive future

Giuseppe Remuzzi

Prendiamoci a cuore il rene Nuove prospettive basate su attuali certezze Milano, 2 dicembre 2016

- A 56-year-old man had progressive renal insufficiency and proteinuria of unknown origin
- A renal biopsy showed that the renal tissue was extensively damaged
- He has been told that the disease will progress to the need of dialysis and that he will have a diminished quality of life
- He is a modern individual, well informed about alternatives

What options?

Mesenchymal stem/stromal cells

MESENCHYMAL STEM CELLS ARE RENOTROPIC, HELPING TO REPAIR THE KIDNEY AND IMPROVE FUNCTION IN ACUTE RENAL FAILURE

Murine MSC $(2\times10^5 \text{ cells})$ when i.v. injected in cisplatin mice exert a protective effect on renal function and tubular injury

Morigi et al., J Am Soc Nephrol, 2004

INTRA-RENAL ARTERIAL INJECTION OF AUTOLOGOUS BONE MARROW MSC AMELIORATES CISPLATIN-INDUCED AKI IN A RHESUS MACAQUE MULATTA MONKEY MODEL

Monkey MSC (5x10⁶ cells/kg) when i.v. injected in cisplatin monkey exert a protective effect on renal function and tubular injury

Moghadasali et al., Cytotherapy, 2014

MESENCHYMAL STEM CELLS ENGRAFT THE KIDNEY AT LOW LEVEL AND DO NOT DIFFERENTIATE INTO TUBULAR EPITHELIAL CELLS

WGA Lectin; DAPI; PKH26-hBM-MSC

- Antioxidant
- Anti-apoptos is
- Chemoattraction
- Angiogenesis
- Support of growth and differentiation of stem and progenitor cells
- Anti-scarring (anti-fibrosis)
- Immunomodulation

MSCs EXERT THEIR RENOPROTECTIVE EFFECT VIA THE LOCAL RELEASE OF IGF-1

Infusion of si-IGF-1 MSCs* resulted in less protective effect on tubular injury

Imberti, Morigi et al., J Am Soc Nephrol, 2007

IGF-1 released by MSC can be further amplified by horizontal transfer of mRNA of the corresponding receptor to tubular cells by exosomes which explains the ability of a low amount of MSC engrafting the kidney to promote prompt recovery from AKI

Tomasoni et al., Stem Cell Dev 2012

Stem Cell and Rep, 2012

Multipotent Mesenchymal Stromal Cell Therapy and Risk of Malignancies

Federica Casiraghi • Giuseppe Remuzzi • Mauro Abbate • Norberto Perico

Subjects given autologous or third party MSC > 700 MSC Follow-up up to 7 years

Disease		Number of patients	MSC source	Follow up	Tumor development
Hematologic malignancies					
Graft-versus-Host-Disease	3	BM	Allogeneic	Not indicated	None
Graft-versus-Host-Disease	55	BM	Allogeneic	60 mo	None
Graft-versus-Host-Disease	8	BM	Allogeneic	3 yr	None
Graft-versus-Host-Disease	13	BM	Allogeneic	250 d	None
Graft-versus-Host-Disease	1	BM	Allogeneic	1 yr	None
Graft-versus-Host-Disease	18	BM	Allogeneic	1 yr	None
Graft-versus-Host-Disease	12	BM*	Allogeneic	730 d	None
Graft-versus-Host-Disease	31	BM*	Allogeneic	28 d	None
Graft-versus-Host-Disease	4	BM	Allogeneic	Not indicated	None
Hematopoietic stem cell Tx	6	BM	Allogeneic	4.8 yr	None
Umbilical Cord Blood Tx	15	BM	Allogeneic	6.8 yr	None
Hematopoietic stem cell Tx	7	BM	Allogeneic	29 mo	None
Hematopoietic stem cell Tx	14	BM	Allogeneic	28 mo	None
Aplastic anemia/HSC Tx	2	BM	Allogeneic	2 yr	None
Breast cancer	28	BM	Autologous	2 yr	None
Hematologic malignancies	10	BM	Allogeneic	3 yr	None
Hematologic malignancies	46	BM	Allogeneic	688 d	None
Hematologic malignancies	15	BM	Autologous	Not indicated	None

Mesenchymal stem cells

- Adipose tissue
- Bone marrow
- Umbilical cord
- Amniotic fluid

HUMAN UMBILICAL CORD-MESENCHYMAL STEM CELLS PROLONG SURVIVAL OF CISPLATIN MICE

Infusion of hUC-MSC (CD44+, CD105+ CD90+, CD73, HLA class I) in cisplatin -treated NOD/SCID mice improved renal function and tubular injury

*p<0.01 vs saline

Morigi, Rota et al., Stem Cells, 2010

HUMAN UMBILICAL CORD-MSC INFUSION ACTIVATES PROSURVIVAL AND MITOGENIC PATHWAYS Akt*-DEPENDENT IN AKI MICE

Control

Cisplatin+hUC-MSCs

Green: Lectin Red: activated Akt Blue: DAPI

*Akt: Serine/threonine specific kinase

Morigi, Rota et al., Stem Cells, 2010

MSC THERAPY COUNTERACTS MITOCHONDRIAL DYSFUNCTION IN RENAL TUBULI IN MICE WITH CISPLATIN INDUCED-AKI

Control

Cispl

Cispl + hUC-MSCs

PARACRINE ACTION OF MSC IN KIDNEY REPAIR

Oxidative stress Hypoxia Inflammation Apoptosis/necrosis Fibrosis/scarring Growth factors pAKT Proliferation Vas cularprotection Mito chondrial home os tas is Tis sue regeneration

> Morigi et al., Stem Cells, 2008 Morigi et al., Stem Cells, 2010 Perico et al., Submitted

Shinya Yamanaka

Cell, November 30, 2007

Derivation of Induced Pluripotent Stem (iPS) Cells

Imberti et al., Scientific Report, 2015

IPS-DERIVED RENAL PROGENITOR CELLS ENGRAFT THE KIDNEY AND PRESERVE RENAL FUNCTION AND STRUCTURE

Cisplatin + saline

h-Mito/Lectin/ DAPI

Imberti et al., Scientific Report, 2015

iPS CELLS PROGRESSING TO THE CLINIC

Age-related macular degeneration	$iPSCs/ESC \longrightarrow$	Retinal pigment epithelium	Clinical Phase I-II
Parkinson disease	iPSCs/ESC →	A9 dopaminergic neuron	Clinical Phase I
Spinal cord injury	iPSCs/ESC →	Oligodendrocyte Progenitor	Clinical Phase I
Diabetes	iPSCs/ESC →	Pancreatic islet β -cell progenitor	Clinical Phase I-II
Myocardial infarction	<i>iPSCs/ESC</i> →	Cardiomyocytes	Clinical Phase I

Trouns on et al., Nature Review 2016

THE LANCET

The Global Burden of Disease Study 2015

08 October 2016 Volume 388, Issue 10053

£5.00 Registered as a newspaper - 155N 0140-6736 Foundal 2821 - Published workly

24

me JSE Number 10012 Fages 1647 1818 October 8-14

Significant demographic changes in the transition between the 20th an 21st centuries

CHRONIC KIDNEY DISEASE: AN IMPORTANT CONTRIBUTOR TO THE NCD BURDEN

CKD attributable deaths - 2015

1,234,900

- Kidney disease is not entirely contained within the cardiovascular risk envelope
- In the low/middle income countries up to 40 % of those identified with CKD do not have diabetes or any cardiovascular disease

GBD 2015 Mortality and Causes of Death Collaborators, Lancet, 2016

Cell-based therapies for experimental chronic kidney disease: a systematic review and meta-analysis

Diana A. Papazova*, Nynke R. Oosterhuis*, Hendrik Gremmels*, Arianne van Koppen, Jaap A. Joles and Marianne C. Verhaar[‡]

Our systematic review and meta-analysis showed that cell-based therapy reduced the development and progression of experimental CKD, as measured by several commonly and clinically used measures of renal function (creatinine, urea, GFR, BP and urinary protein) and for common experimentally used measures of renal damage

This finding proved to be consistent despite considerable differences between studies in the selection and preparation of cells, administration route and choice of disease model and model species

STELLAR (Stem cell based therapy for kidney repair)

AnEUfinancedresearchconsortiuminterested indevelopinganalternativetoreplacementtherapymakinguseofnewlydiscoveredkidneymesenchymalstemcellsstem

European Union-Australia Cooperation

Number?

Whether they have to be differentiated into renal cells before transplantation?

Is this procedure safe in the long term?

To which extent these cells are retained into myocardial tissue?

Maldifferentiation or tumor formation?

EFFECT OF HUMAN MSC OF DIFFERENT ORIGINS OR CONDITIONED MEDIUM ON ENDOTHELIAL CELL DAMAGE IN RATS WITH CKD

Control

ADR+ucMSCs

ADR+bmMSCs

 $ADR+CM^{\circ}$ -uc MS Cs

ADR+kMSCs*

* kMSCs: kidney-derived MSCs ° CM: conditioned medium

RECA-1

RECA-1

29

NEPHSTROM clinical trial

novel stromal cell therapy for diabetic kidney disease

Leader:

IRFMN, Bergamo, Italy Norberto Perico, Federica Casiraghi

Giuseppe Remuzzi

Coordination: *IRFMN*, *Bergamo*, *Italy* Nadia Rubis

Partners

- National University of Ireland, Galway, Ireland (M. Griffin)
- University Hospital Birmingham NHS Foundation Trust, Birmingham, UK (P. Cockwell)
- Belfast Health and Social Care Trust, Belfast, UK (P. Maxwell)
- IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy

The case of kidney self repair

Ruggenenti et al., Lancet, 1998

REGRESSION

10 patients with increasing GFR

Ruggenenti et al., J Am Soc Nephrol, 1999

Remuzzi A. et al., Kidney Int, 2006

INSIGHT INTO ACE-INDUCED RENAL REPAIR/ANGIOGENESIS

Renal cells

• Adult differentiated

Resident progenitor/stem

Extra renal cells

• Endothelial progenitor and/or bone marrowderived stem
Bowman's capsule at SEM

NCAM* co-expresses progenitor cell marker CD24

NCAM CD24

*Neural Cell Adhesion Molecule: a protein expressed in metanephric mesenchyme

Benigni et al., Am J Pathol, 2011

Benigni et al., Am J Pathol, 2011

ACE INHIBITORS LIMIT AT1R OVEREXPRESSION IN RENAL PROGENITOR CELLS

Rizzo et al., Am J Pathol, 2013

HUMAN PROGENITOR CELLS RARELY EXPRESS AT1R IN NORMAL KIDNEY

Rizzo et al., Am J Pathol, 2013

Migration of parietal cells from the Bowman's capsule to capillary tuft

MWF 25wk

Wistar 25wk

RemuzziA. et al., JAm Soc Nephrol, 2015

MWF 25wk

MWF 50wk

MWF + *Lis inopril* 50-60*wk*

RemuzziA. et al., JAm Soc Nephrol, 2015

Unexpectedly, gene expression of vascular growth promoting factors, such as VEGF and related receptors or angiopoietin-1 and angiopoietin-2, did not change between MWF 60 and Wistar rats, while genes related to fibrosis, inflammation and extracellular matrix remodeling, including $TGF\beta^2$ and ET-1, were differentially expressed between the two strain Remuzzi A. et al., J Am Soc Nephrol, 2015

RemuzziA. et al., JAm Soc Nephrol, 2015

HEART TRANSPLANT RECIPIENT CLIMBS THE MATTERHORN (Swiss Alps)

42-year-old Kelly Perkins becomes the first person with a heart transplant to ascend the 4478-m peak

Kelly Perkins on her climb

The Matterhorn in Zermatt, Switzerland

Lancet, 2003

LONG TERM GRAFT SURVIVAL AFTER RENAL TRANSPLANTATION HAS NOT SIGNIFICANTLY IMPROVED IN THE PERIOD 1991-2010

THE PROMISE OF NOVEL IMMUNOSUPPRESSIVE AGENTS

THE SPECIAL PROBLEM OF MEMORY

Jones et al., Transplantation, 2006

Memory T cells contribute to allograft rejection through:

- Activation endothelial cells
- Help naïve CD8, CD4 T cells and B cells

THE SPECIAL PROBLEM OF MEMORY

Memory T cell response

- MMF Inhibition (partial)
- Basiliximab Inhibition (partial)
- Sirolimus, everolimus
- Alemtuzumab*

*Campath-1

Stimulation

Stimulation

Belatacept

1,420 -11,300 euro per month depending on treatment phase

• CD8+CD28⁻ T cells harbor effector-memory phenotype

Traitanou et al., Am J Transpl, 2014

• CD4+CD28⁻CD57⁺ T cells underlie belatacept-resistant allograft rejection

Espinosa et al., Am J Transpl, 2016

AUTOLOGOUS MSC PROLONG HEART TRANSPLANT SURVIVAL MEDIATED BY CD4+CD25+Foxp3+ REGULATORY T CELLS

Casiraghi et al, J Immunol, 2008

Timing is important

LIVING TRANSPLANT RECIPIENTS

Perico, Casiraghi et al, Transplant Int, 2013

Perico, Casiraghi et al, Transplant Int, 2013

LONG-LASTING COMPLETE AND DONOR-SPECIFIC SUPPRESSION OF CD8+ T CELL CYTOTOXICITY

Cell mediated lympholysis (% of specific lysis)

Patients	pre-tx	1 st yr	2 nd yr	3 th yr	5 th yr
	don third-party	don third-party	don third-party	don third-party	don third-party
1	3.9 26.0	0 6.0	0.3 41.2	0 21.0	0.4 41.4
2	4.0 29.0	0 7.6	0.5 0	<mark>0</mark> 22.5	3.0 26.5
3	4.6 13.6	0 6.3	<mark>0</mark> 18.7	<mark>0</mark> 28.5	1.2 61.5
4	2.4 4.9	0 4.9	0 3.7	<mark>0</mark> 25.9	
CTR Mear (n=6) SE	8.0 15.5 5.5 7.6	6.3 10.8 3.5 5.3	5.6 4.3 2.0 1.8	1.9 13.8 1.3 7.9	3.0 23.9 4.6 7.1

Spontaneous operational tolerance to kidney allograft is associated with elevated number of naïve and transitional B cells with regulatory properties suggesting a critical role for these B cells subsets in the regulation of alloimmune response

DONOR HLA-SPECIFIC ANTIBODIES

Patients	pre-tx	1 st year	2 nd year	3 rd year	5 th year
1	NEG	NEG	NEG	NEG	NEG
2	NEG	NEG	NEG	NEG	NEG
3	NEG	NEG	NEG	NEG	NEG
4	NEG	NEG	NEG	NEG	NEG
CTR <i>(n=6)</i>	NEG	NEG	5 NEG 1 POS	NEG	3 NEG 3 POS

By Luminex Threshold for DSA positivity: Mean Fluorescence Intensity > 2000

RENAL GRAFT FUNCTION IN MSC-TREATED PATIENTS

Values are median of individual GFR slopes

Measured GFR by iohexol plasma clearance

RENAL GRAFT FUNCTION IN MSC-TREATED PATIENTS

Patients	Last follow-up (range 5-8 years)
1	- 0.157
2	- 0.398 Engraftment syndrome
3	+ 2.301
4	- 1.442° Acute rejection
CTR (n=6, median)	- 1.326

GFR slope (ml/min/1.73 m² /year)

Measured GFR by iohexol plasma clearance

IMMUNOSUPPRESSIVE DRUG TAPERING IN PATIENT #3 OVER 5 YEAR FOLLOW-UP

+ MP L-RATG (0.5 mg/kg)

* Dose: 2 x 10⁶/kg i.v.

REGISTERED CLINICAL TRIALS OF MSCs IN SOLID ORGAN TRANSPLANTATION

MSC and subclinical kidney graft rejection (*Leiden, Netherlands*)

MSC after renal or liver Tx (*Liege, Belgium*)

MSC in liver Tx (Regensburg, Germany)

MSC in kidney Tx (*Chandigarh, India*) MSC for kidney acute rejection with donors after cardiac death

(Fujian, China,)

Induction therapy with MSC for kidney allograft MSC + Standard CNI (n = 53) MSC + Low CNI (n = 52)

www.ClinicalTrials.gov, 2015

 $\begin{array}{ll} MSC & groups \ n = 105 \\ Control & groups \ n = 51 \end{array}$

Endpoint: acute graft rejection

Riella et al., JAMA, 2012 Casiraghi et al., Nat Rev Nephrol, 2016

These slides are belonging to GIUSEPPE REMUZZI, MD

IRCCS- Mario Negri Institute for Pharmacological Research, Bergamo, Italy.

Using these slides is only authorized by mentioning the source